Defining the Role of Mechanical Signals During Nerve Root Compression in the Development of Sustained Pain and Neurophysiological Correlates that Develop in the Injured Tissue and Spinal Cord

نویسنده

  • Kristen Nicholson
چکیده

Cervical nerve root injury commonly leads to pain. The duration of an applied compression has been shown to contribute to both the onset of persistent pain and also the degree of spinal cellular and molecular responses related to nociception that are produced. This thesis uses a rat model of a transient cervical nerve root compression to study how the duration of an applied compression modulates both peripherally-evoked activity in spinal cord neurons during a root compression and the resulting neuronal and glutamatergic responses in the nerve root and spinal cord. Studies define the compression duration threshold that inhibits peripherally-evoked action potentials in the spinal cord during a root compression to be at 6.6±3.0 minutes and this is similar to the threshold for eliciting persistent mechanical allodynia after a cervical root compression that lies between 3 and 10 minutes. Furthermore, neurotransmission remains inhibited for at least 10 minutes after a painful nerve root compression and this may contribute to the subsequent development of neuropathology in the root, spinal neuronal hyperexcitability, downregulation of spinal GLT-1 and upregulation of spinal GLAST at day 7. Additional studies examine the role of the spinal glutamatergic system in mediating radicular pain by administering Riluzole to inhibit glutamate release at day 1 or ceftriaxone daily to upregulate spinal GLT-1, separately. Both treatments abolished behavioral sensitivity and the associated neuronal hyperexcitability that is normally observed in the deep laminae of the dorsal horn. Additionally, Riluzole mitigated the axonal neuropathology in the root that normally develops by day 7 while ceftriaxone restored the spinal expression of GLAST. Together these studies identify how one aspect of nerve root biomechanics, compression duration, modulates neuronal and glutamatergic responses in the nerve root and spinal cord that are associated with cervical radicular pain. Day 1 was identified as a critical time-point when inhibiting glutamate signaling in the central nervous system can prevent persistent nerve root-mediated pain that is likely maintained by downregulation of spinal GLT-1. Finally, these studies suggest that primary afferent regulation of spinal GLT-1 may have a critical role in transducing the biomechanics of a nerve root compression into radicular pain. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Beth A. Winkelstein This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/785

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of acetyl l-carnitine on ultrastructure of injured motoneuron synapses in adult rat

Background and Objective: Spinal cord compression is a relatively common neurological complication in developing country. This study was designed to assess neuroprotective effect of acetyl L-carnitine. Materials and Methods: 16 adult Sprague Dawley rats weighing 250 to 300 g were divided into 4 randomized groups, namely, A-laminectomy with daily intraperitoneal injection of acetyl L-carnitine....

متن کامل

A Case of Spinal Cords Compression Dute to EMHP

SUMMARY Spinal cord compression due to extramedullary hematopoietic tissue although very rare, is a well known phenomenon. The first case of spinal cord compression due to E.M.H.P. tissue in thalassemia was reported in 1954 by Gatto et al. Sinc then about 59 cases have been reported in literature. We present a new case who has been hospitalized in neurologic ward in Loghman -e- Hakim Hospital ...

متن کامل

P169: The Role of Lymphocytes in Spinal Cord Injury and Pain; T Helper Cells (TH1 and TH2 Cells)

Lymphocyte is one of the subtypes of white blood cell (WBC) in immune system. Lymphocytes contain T cells, natural killer cells , and B cells. They are the head type of cell found in lymph, which for this reason the name "lymphocyte". Lymphocytes can be recognized by their large nucleus. Infiltration of immune cells in the central nervous system (CNS) helps the start of chronic pain. ...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014